Evaluation without Experimentation

Measuring the impact of relational organizing with causal inference

Emily Riederer

Bluebonnet Data Fellow for Two Million Texans

Two Million Texans wanted to understand whether their all-volunteer, largest-ever relational organizing network drove midterm turnout

>5,000 Volunteers added Friend & Family to Network

and encouraged network to GOTV, supported by the Reach app and personalized emails

Treatment Applied

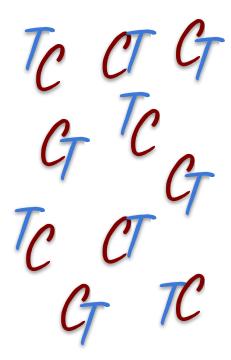
Voter presence in volunteer network (contact assumed)

Outcome of Interest

Increased voter turnout in 2022 midterm election

Did it work?!

Why not experiment?



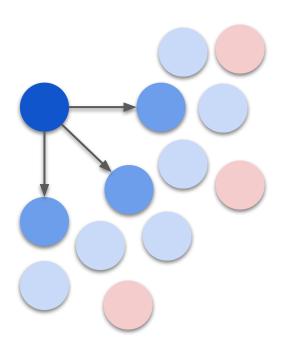
In industry, strategies are measured with random experiments

- Randomly assign people to 'treatment' and 'control'
- Only intervene (e.g. encourage turnout) for treatment
- Compare results between groups

Field experimentation is not ideal in organizing

- Every vote matters! *Especially* for state and local races
- Unintuitive to request that volunteers not contact network

Why not *not* experiment?



Cannot just compare 2018 to 2022 for same voter set

Many causes of cycle-to-cycle change besides our campaign:

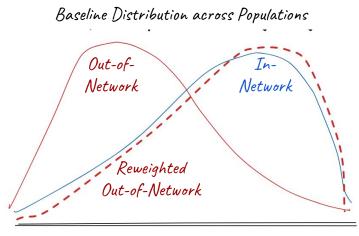
- Fundamental differences in coverage between cycles
- Presence of high-profile local races chance by-cycle behavior
- Redistricting

Cannot just compare in-network versus out-of-network

Many systemic differences between in- and out-of-network:

- Volunteers are more engaged than general population
- People tend to know people more like them
- Volunteers are steered to contact their 'top targets'

We can 'find' comparable control individuals among out-of-network voters with Inverse Propensity of Treatment Weighting (IPTW)



P(Midterm Turnout)

Recipe:

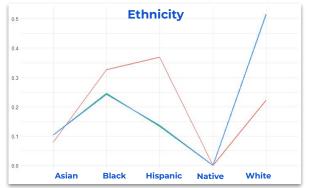
- 1. Model Probability(Treatment), **p**, based on voter traits
- 2. Compute IPTW weights*, **p / (1-p)**, for out-of-network voters
- 3. Weights represent similarity of each voter to our network
- 4. Calculate turnout for in/out-of-network using weights
- 5. Compare results

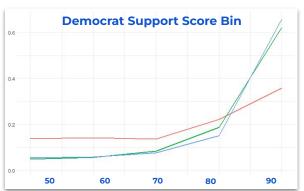
Assumptions:

- Non-treated population contains some individuals that are 'similar to' each treated individual
- Common causes of treatment and turnout are observable

Reweighting adjustment in action on baseline voter characteristics (example: Harris County)

<u>Distribution (% of Population) by Trait</u>





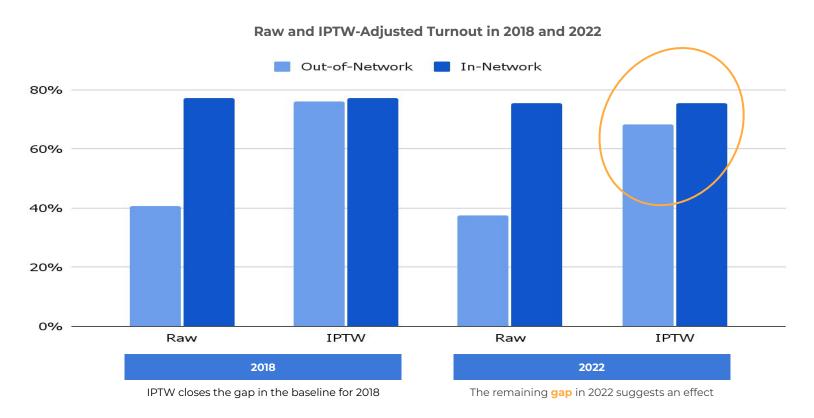
In-network

Out-of-network

Resampled out-of-network

Note: Dimensions shown for example purposes only. More features were used in reweighting

Reweighting adjustment in action on pre/post-treatment outcomes (example: Harris County)



We increased turnout by +4-6 percentage points in our core counties

All-Election Turnout by Treatment of 'In-Network' of Highly Engaged User

		Effect on Turnout*			
County	N	Percentage Point Increase within Treatment	Number of Voters (N * PP Increase)		
Harris	31,712	+5.9	1,871		
Fort Bend	13,015	+4.2	547		
Travis	45,361	+4.8 2,177			

Results suggest impact exceeded win margin in key local judicial races!

Step-by-step implementation details are available in the appendix

Questions?

↓ Get in touch **↓**

@emilyriederer on <u>Web</u> | <u>Twitter</u> | <u>GitHub</u> | <u>LinkedIn</u> | Gmail

↓ Check out these resources **↓**

<u>Understanding propensity score weighting</u>
<u>Causal design patterns</u>
<u>Causal inference resource roundup</u>

→ Reference these (free!) books →

The Effect: an Introduction to Research Design and Causality

Causal Inference: the Mixtape

Causal Inference: What If?

↓ Find more math in the Appendix ↓

Appendix

Different mappings from propensity scores (P) to weights allow us to calculate different effects

	Average Treatment Effect on the Treated (ATT)	Average Treatment Effect (ATE)	Average Treatment Effect on the Control (ATC)	
Key Question	What effect did we accomplish where we were actually acting?	What effect could we accomplish if we could treat everyone?	What effect could we accomplish where we weren't acting?	
Weight (Treated)	1	1/P	(1-P)/P	
Weight (Control) P / (1-P)		1/(1-P)	1	

Intuition for ATT weights

Recall Unit Cancellation

1 foot

X
(12 inches / 1 foot)

=
12 inches

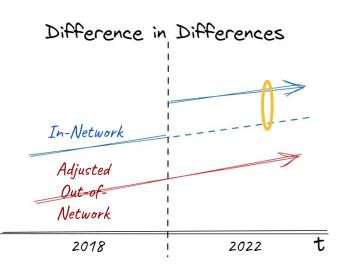
Analogize to Weights

1 control unit

P treatment-like units / (1-P) control-like units

P / (1-P) treatment-like units

Unexplained residual confounding in 2018 turnout was further reduced with a difference-in-differences strategy



When we have:

- Different baselines in comparison groups
- Variation across time (pre/post)

Recipe:

- 1. Compute difference in pre-treatment period (2018)
- 2. Compute difference in post-treatment period (2022)
- 3. Take the difference between (2) and (1) to find the effect

Assumptions:

- Decision to treat not influenced by anticipated outcome
- If not for the treatment, groups would have parallel trends
- Treatment of one group does not affect behavior of other

Reweighting adjustment in action (example: Harris County)

	Raw Turnout		Propensity-Score	Final Effect Estimate	
Network	2022	2018	2022	2018	Adjusted 2022 - 2018 PP+
In	75.4%	77.1%	75.4%	77.1%	
Out	37.5%	40.7%	68.4%	76.0%	
Difference	37.9%	36.4%	7.0%	1.1%	+5.9%

